Preliminary communications

EXPERIMENTAL OBSERVATION OF DIASTEREOTOPY OF CARBONYLIC LIGANDS IN TRANSITION METAL COMPLEXES CONTAINING A CHIRAL GROUP

T.Yu. ORLOVA, P.V. PETROVSKII, V.N. SETKINA and D.N. KURSANOV Institute of Organo-Element Compounds, Academy of Sciences, Moscow (U.S.S.R.) (Received December 23rd, 1973)

Summary

Diastereotopy of carbonyl ligands in π -C₅ H₅ Fe(CO)₂ CH(CH₃)C₆ H₅ was observed with ¹³C NMR spectroscopy.

Carbonyl ligands in the dicarbonyl transition metal complexes containing a chiral group bound to the metal are diastereotopic. However, no experimental evidence on the carbonyl ligand diastereotopy in such complexes has been yet reported. We synthesized the complex π -C₅ H₅ Fe(CO)₂ CH(CH₃)C₆H₅ (I). Complex I contains a chiral centre at the carbon atom bound to the iron, and the phenyl group thus its carbonyl ligands are diastereotopic.

Using ¹³C NMR we found a non-equivalence of chemical shifts of carbon nuclei in the carbonyl ligands of I. The ¹³C NMR spectrum of the complex is shown in Fig.1, from which it can be seen that the carbon nuclei in carbonyl ligands give rise to two singlet signals at δ 217.1 and 217.5 ppm. $\Delta\delta$ 0.4 ppm. We note that in the spectrum of π -C₅ H₅ Fe(CO)₂ CH₂ C₆ H₅ the carbonyl carbons only produce a singlet at 216.7 ppm.

Complex I was obtained from sodium salt of cyclopentadienyliron dicarbonyl and α -phenylethyl chloride. The structure of I was confirmed by elemental analysis, IR, PMR and mass spectra.

Fig.1. The ¹³C NMR spectrum of complex π -C₅H₅Fe(CO)₂CH(CH₃)C₆H₅.

The ¹³C NMR spectrum was taken on HX-90 Brueker instrument at 22.63 MHz with the use of a wide band ¹³C—H decoupler. CHCl₃ was employed as an internal standard and solvent. The ¹³C NMR chemical shifts of complex I are listed below (δ ppm from TMS): 20.51 (CH₃), 28.31 (CH), 86.53 (C₅ H₅), 123.11 (*p*-C₆ H₅), 125.58 and 127.85 (*o*-, *m*-C₆ H₅), 157.48 (key atom), 217.06 and 217.52 (carbonyl groups).

As far as we know this is a first example of experimental evidence to diastereotopy of the carbonyl ligands in transition metal complexes.